2.6.7 Attachments

2.6.7.1 Sample Field Report

REPORTED BY

Call Address:
On Service Request \qquad (SR \# \qquad
Caller Name: \qquad Phone: \qquad
Receipt of Call: Date: \qquad Time: \qquad $:-$ \square AM $\quad \square$ PM Call Received By:

Call Dispatch: \qquad Time: \qquad : \qquad \square AM $\square \mathrm{PM}$ Assigned To: USD Arrival Time: Date: \qquad 1 1 Time: :
\square AM \square PM

SPILL START TIME NOTES

Caller Interview: \quad Where did you see sewage spill from? From: Manhole \square Inside Building $\square \mathrm{C} / \mathrm{O} \square$ \square Wet well/Lift station $\quad \square$ Other \qquad
Time Caller noticed spill: \qquad : \qquad
\square AMPN Date: \qquad 1 \qquad Comments:
\qquad
\qquad

Last time Caller observed NO Spill occurring: \qquad $:$ \qquadAMPM Date:
\qquad
1
Comments:
\qquad
\qquad
\qquad
\qquad

SSO End Time \qquad $:$ \qquad $\square \mathrm{AM}$ \square PM Date: \qquad 1 1

Other Comments regarding spill start time:

SPILL LOCATION

Observed: Spill from: \square Manhole ID \qquad
\square Lift Station ID \qquad

Clean Out Address

Comments:

Building Address

Comments:
\qquad

Spill Destination: \square Building \square Paved Surface \square Storm Sys \square Curb/Gutter \square Unpaved \square Surface

Answer these questions:

\#1 - Was there a discharge to surface water or a drainage channel that is tributary to surface water? \qquad Yes \qquad No
\#2 - Was there a discharge to a storm drain pipe that was "NOT" fully captured \& returned to the sanitary sewer system? \qquad Yes \qquad No

Water
If you answered no to both questions above, was it $\geq 1,000$ gallons? \qquad Yes \qquad No
If yes, the SSO is a Category 2. If NO, the SSO is a Category 3.

SPILL VOLUME WORKSHEET

The purpose of this worksheet is to capture the data and method(s) used in estimating the volume of an SSO. Since there are many variables and often unknown values involved, this calculation is just an estimate. Additionally, it is useful to use more than one method, if possible, to validate your estimate.

The following methods and tools are the approved methods in the SOP CS-103 SSO Response. Check all methods and tools that you used:

- Eyeball Estimate Method
- Measured Volume Method
\square Duration and Flow Rate Method (Account for diurnal flow pattern for long duration)
- USD SSO Flow Rate Estimating Tool
\square Other (explain) i.e.; estimated daily use per capita upstream or meter @ Pump Station.

Eyeball Estimate Method- Imagine a bucket(s) or barrel(s) of water tipped over.

Size of bucket(s) or barrel(s)	How many of this Size?	Multiplier	Total Volume Estimated
1 gal. water jug		$\times 1$	
5 gal. bucket		$\times 32$	
32 gal. trash can		$\times 55$	
55 gal drum			
Total Volume Estimated Using Eyeball Method			

Measured Volume Method (this may take several calculation as may have to break down the odd shaped spill to rectangles, circles, and polygons) It is important when guessing depth to measure, if possible in several locations and use an average depth. Use the SSO Volume Estimate by Area Work Sheet , if necessary, to sketch the shapes and show your work.

1. Draw a sketch of the spill SSO Volume Estimate by Area Work Sheet, or use a photo copy of USD block book to draw on and attach it.
2. Draw shapes and dimensions used on your sketch
3. Use correct formula for various shapes

Rectangle	$\mathrm{L} \times \mathrm{W} \times \mathrm{D}$
Circle	$3.14 \times \mathrm{R}^{2} \times \mathrm{D}$
Polygons see reference chart	Show formula used

Duration and Flow Rate Method worksheet:

Start Date and Time	1.
End Date and time	2.
Total time elapsed of SSO event (subtract line 1 from line 2. Show time in minutes)	3.
Average flow rate GPM (account for diurnal pattern)	4.
Total volume estimate using duration and flow rate method (Line $3 \times$ Line 4)	5.

CAUSE OF SPILL

Spill Cause: \square Roots \square Grease \square Debris \square Vandalism \square Lift Station Fail \square Other \qquad
Spill cause to be determined by CCTV inspection (Attach TV Report to this form)
Final Cause Determination:
\qquad
\qquad
\qquad
Follow-up or Corrective Action Taken:
\qquad
\qquad
\qquad
\qquad
\qquad

SPILL CONTAINMENT

Containment Implemented: \qquad $: \square$ $\square \mathrm{AM}$ \square \square PM Date: \qquad I_

Containment Measures: \square Plugged Storm Drain \square Washed Down \square Vacuum Up Water/Sewage
\square Other Measures:

CLEAN UP

Describe Clean Up Operations:
\qquad
\qquad
\qquad

Gallons - Estimate Volume of Spill Recovered (do not count wash down water)
\qquad

OTHER IMPORTANT MILESTONES

REPORTING

Notes:
\qquad

Response Crew:

2.6.7.2 SSO Volume by Area Estimation Work Sheet

Surface: \square Asphalt \square Concrete $\quad \square$ Dirt $\quad \square$ Landscape \square Inside Building Other \qquad
(Draw / Sketch outline of Spill 'Footprint' and attach photos)
~~Breakdown the 'Footprint' into Recognizable Shapes and Determine Dimensions of Each Shape ~~ Area \#1 \qquad \% Wet \qquad
\square Stain. Depth1 \qquad Depth2 \qquad Depth3 \qquad Depth4 \qquad Depth5 \qquad Depth6 \qquad
Area \#2 \qquad
\square号
\qquad
\qquad Depth2 \qquad Depth3 \qquad Depth4 \qquad Depth5 \qquad \% Wet \qquadStain. Depth1 \qquad Depth3 ____ Depth6 \qquad
Area \#3 \qquad \% Wet \qquadStain. Depth1 \qquad Depth2 \qquad Depth3 \qquad Depth4 \qquad Depth5 \qquad Depth6 \qquad
Area \#4 \qquad
\square Stain. Depth1 \qquad Depth2 \qquad Depth3 \qquad Depth4 \qquad Depth5 \qquad \% Wet \qquad

Area \#5 \qquad \% Wet \qquad
\square Stain. Depth1 \qquad Depth2 \qquad Depth3 \qquad Depth4 \qquad Depth5 \qquad Depth6 \qquad

Area \#6 \qquad \% Wet \qquad
\square Stain. Depth1__ Depth2 __ Depth3 __ Depth4 __ Depth5 __ Depth6 ___

Area \#1
Square Feet: \qquad x \% Wet \qquad $=$ \qquad Sq/Ft

Ave Depth: \qquadConcrete 0.0026'Asphalt 0.0013'

Volume: \qquad $\mathrm{Cu} / \mathrm{Ft}$

Area \#2 Square Feet: \qquad x \% Wet \qquad $=$ \qquad Sq/Ft

Ave Depth: \qquadConcrete 0.0026'Asphalt 0.0013'

Volume: \qquad $\mathrm{Cu} / \mathrm{Ft}$

Area \#3 Square Feet: \qquad x \% Wet \qquad $=$ \qquad Sq/Ft

Ave Depth: \qquadConcrete 0.0026 \square Asphalt 0.0013'

Volume: \qquad $\mathrm{Cu} / \mathrm{Ft}$

Area \#4 Square Feet: \qquad x \% Wet \qquad $=$ \qquad Sq/Ft

Ave Depth: \qquadConcrete 0.0026’ \square Asphalt 0.0013'

Volume: \qquad $\mathrm{Cu} / \mathrm{Ft}$

Area \#5 Square Feet: \qquad x \% Wet \qquad $=$ \qquad Sq/Ft

Ave Depth: \qquadConcrete 0.0026'Asphalt 0.0013'
Volume: \qquad $\mathrm{Cu} / \mathrm{Ft}$

Area \#6
Square Feet: \qquad x \% Wet \qquad $=$ \qquad Sq/Ft

Ave Depth: \qquad
\square Concrete 0.0026'Asphalt 0.0013'

Volume: \qquad $\mathrm{Cu} / \mathrm{Ft}$

Total Volume:
\qquad , \#2 \qquad , \#3 \qquad \#4 \qquad , \#5 \qquad , \#6 \qquad $=$ \qquad *cu ft
\qquad *cu ft $\times 7.48$ gallons $=$ \qquad gallons Spilled.

SSO Volume by Area Estimation Work Sheet

CONVERSIONS

** To convert inches into feet: Divide the inches by 12.
Example: 27 " / 12 = 2.25'
Or Use Chart A
Example: $13 / 4^{\prime \prime}=$?

$$
1^{\prime \prime}\left(0.08^{\prime}\right)+3 / 4^{\prime \prime}\left(0.06^{\prime}\right)=\underline{0.14^{\prime}}
$$

** One Cubic Foot $=7.48$ gallons of liquid.

Chart A		
Conversion:		
Inches	to	Feet
1/8"	$=$	0.01'
1/4"	$=$	0.02 '
3/8"	=	0.03 '
1/2"	=	0.04'
5/8"	=	0.05 '
3/4"	=	0.06'
7/8"	=	0.07 '
1 "	=	0.08'
2"	=	0.17 '
3"	=	0.25 '
4"	=	0.33 '
5"	=	0.42 '
6"	=	0.50 '
$7 \times$	=	0.58 '
8"	$=$	0.67 '
9"	$=$	0.75'
10"	=	0.83 '
11"	=	0.92 '
12 "	$=$	1.00'

GEOMETRY

For the purposes of this work sheet, the unit of measurement will be in feet for formula examples.
Area is two-dimensional - represented in square feet. (Length x Width)
Volume is three-dimensional - represented in cubic feet. (Length x Width x depth) or (Diameter Squared) $D^{2} \times 0.785 \times$ depth.

A Note about Depth

Wet Stain on a Concrete Surface - For a stain on concrete, use 0.0026 '. This number is $1 / 32$ " converted to feet. For a stain on asphalt use 0.0013^{\prime} ($1 / 64^{\prime \prime}$). These were determined to be a reasonable depth to use on the respective surfaces through a process of trial and error by SPUD staff. A known amount of water (one gallon) was poured onto both asphalt and concrete surfaces. Once the Area was determined as accurately as possible, different depths were used to determine the volume of the wetted footprint until the formula produced a result that (closely) matched the one gallon spilled. $1 / 32$ " was the most consistently accurate depth on concrete and $1 / 64$ " for asphalt. This process was repeated several times.

Sewage "Ponding" or Contained - Measure actual depth of standing sewage whenever possible. When depth varies, measure several (representative) points, determine the average and use that number in your formula to determine volume.

Area/Volume Formulas

Area is two dimensional and is represented as Square Feet (Sq. Ft.)
Volume is three dimensional and is represented as Cubic Feet (Cu. Ft.)
One Cubic Foot $=7.48$ gallons

AREA/VOLUME OF A RECTANGLE OR SQUARE

Formula: Length x Width x Depth $=$ Volume in Cubic Feet

Length (25') x Width (12') x Depth (0.14')
$25^{\prime} \times 12^{\prime} \times 0.14^{\prime}=42$ Cubic Feet.

Now the Volume in Cubic Feet is known.

There are 7.48 Gallons in one Cubic Foot

So, 42 Cubic Feet $\times 7.48$ gallons/cubic feet $=314$ Gallons

Chart A		
Conversion:		
Inches		Feet
1/8"	$=$	0.01'
1/4"	$=$	0.02'
3/8"	$=$	0.03'
1/2"	=	0.04’
5/8"	=	0.05'
$3 / 4$ "	$=$	0.06'
7/8"	$=$	0.07 ${ }^{\prime}$
1"	$=$	0.08'
2"	$=$	0.17 ${ }^{\prime}$
3"	$=$	0.25'
4"	$=$	0.33'
5"	$=$	0.42'
6"	$=$	0.50'
7"	$=$	0.58'
8"	=	0.67 ${ }^{\prime}$
9"		0.75 '

SSO Volume by Area Estimation Work Sheet

Page 6
AREA/VOLUME OF A RIGHT TRIANGLE

SSO Volume by Area Estimation Work Sheet

AREA/VOLUME OF A CIRCLE/CYLINDER

$D^{2} \times 0.785 \times d$

Diameter Squared $\times 0.785 \times$ Depth $=$ Volume in cubic feet.

Diameter $=$ Any straight line segment that passes through the center of a circle.

For our purposes, it is the measurement across the widest part of a circle.

D2 $\times 0.785 \times$ depth $=$ Volume in cubic feet

Example:
$27^{\prime} \times 27^{\prime} \times 0.785 \times 0.03=17.17$ cubic feet
17.17 cubic feet $\times 7.48$ gallons/cubic feet $=128$ gallons

Chart - A		
Conversion:		
Inches to Feet		
1/8"	$=$	0.01'
1/4"	$=$	0.02'
3/8"	$=$	0.03'
1/2"	$=$	0.04'
5/8"	$=$	0.05'
3/4"	$=$	0.06'
7/8"	$=$	0.07’
	$=$	0.08'
2"	$=$	0.17 ${ }^{\prime}$
	$=$	0.25'
	=	0.33 '

Find the geometric shapes within the shape. If this was the shape of your spill, break it down, as best you can, with the shapes we know.

If the spill depth is of varying depths, take several measurements at different depths and find the average.

$2^{\prime \prime}+1.5^{\prime \prime}+1.25^{\prime \prime}+1^{\prime \prime}+1^{\prime \prime}+0.75^{\prime \prime}+0.5^{\prime \prime}+0.25^{\prime \prime}=8.25^{\prime \prime}$
8.25 " / 8 measurements $=1.03^{\prime \prime}$

Average Depth $=1.03$ "

Step 1

If the spill affects a dry, unimproved area such as a field or dirt parking lot, determine the Area of the wetted ground in the same manner as you would on a hard surface. Using a round-point shovel, dig down into the soil until you find dry soil. Do this in several locations within the wetted area and measure the depth of the wet soil. Average the measurement/thickness of the wet soil and determine the average depth of the wet soil.

Step 2

Take a Test Sample

EXAMPLE:

If the Area of the spill was determined to be $128 \mathrm{Sq} / \mathrm{Ft}$ and the average depth of the wet soil is 2.33 inches:
$128 \mathrm{Sq} / \mathrm{Ft} \times 0.194^{\prime}=24.83 \mathrm{Cu} / \mathrm{Ft}$
24.83 Cu/Ft x 7.48 Gals/Cu/Ft $=185.74$ gallons
$2 "+1.5^{\prime \prime}+1.25 \prime+3 \prime+5^{\prime \prime}+1.25 \prime=14.0^{\prime \prime}$
14.0" / 6 measurements $=2.33$ "

Average Depth $=2.33^{\prime \prime}\left(0.194^{\prime}\right)$

